Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 55
1.
Breast Cancer Res ; 26(1): 70, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654332

BACKGROUND: Basal-like breast cancer (BLBC) is the most aggressive subtype of breast cancer due to its aggressive characteristics and lack of effective therapeutics. However, the mechanism underlying its aggressiveness remains largely unclear. S-adenosylmethionine decarboxylase proenzyme (AMD1) overexpression occurs specifically in BLBC. Here, we explored the potential molecular mechanisms and functions of AMD1 promoting the aggressiveness of BLBC. METHODS: The potential effects of AMD1 on breast cancer cells were tested by western blotting, colony formation, cell proliferation assay, migration and invasion assay. The spermidine level was determined by high performance liquid chromatography. The methylation status of CpG sites within the AMD1 promoter was evaluated by bisulfite sequencing PCR. We elucidated the relationship between AMD1 and Sox10 by ChIP assays and quantitative real-time PCR. The effect of AMD1 expression on breast cancer cells was evaluated by in vitro and in vivo tumorigenesis model. RESULTS: In this study, we showed that AMD1 expression was remarkably elevated in BLBC. AMD1 copy number amplification, hypomethylation of AMD1 promoter and transcription activity of Sox10 contributed to the overexpression of AMD1 in BLBC. AMD1 overexpression enhanced spermidine production, which enhanced eIF5A hypusination, activating translation of TCF4 with multiple conserved Pro-Pro motifs. Our studies showed that AMD1-mediated metabolic system of polyamine in BLBC cells promoted tumor cell proliferation and tumor growth. Clinically, elevated expression of AMD1 was correlated with high grade, metastasis and poor survival, indicating poor prognosis of breast cancer patients. CONCLUSION: Our work reveals the critical association of AMD1-mediated spermidine-eIF5A hypusination-TCF4 axis with BLBC aggressiveness, indicating potential prognostic indicators and therapeutic targets for BLBC.


Breast Neoplasms , Cell Proliferation , Eukaryotic Translation Initiation Factor 5A , Gene Expression Regulation, Neoplastic , Lysine/analogs & derivatives , Peptide Initiation Factors , RNA-Binding Proteins , Spermidine , Transcription Factor 4 , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/genetics , Mice , Animals , Spermidine/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Transcription Factor 4/metabolism , Transcription Factor 4/genetics , Cell Line, Tumor , Promoter Regions, Genetic , Adenosylmethionine Decarboxylase/metabolism , Adenosylmethionine Decarboxylase/genetics , Cell Movement/genetics , DNA Methylation , Prognosis , SOXE Transcription Factors/metabolism , SOXE Transcription Factors/genetics
2.
Cell Commun Signal ; 22(1): 115, 2024 02 12.
Article En | MEDLINE | ID: mdl-38347536

Phosphorylation proteomics is the basis for the study of abnormally activated kinase signaling pathways in breast cancer, which facilitates the discovery of new oncogenic agents and drives the discovery of potential targets for early diagnosis and therapy of breast cancer. In this study, we have explored the aberrantly active kinases in breast cancer development and to elucidate the role of PRKCD_pY313 in triple negative breast cancer (TNBC) progression. We collected 47 pairs of breast cancer and paired far-cancer normal tissues and analyzed phosphorylated tyrosine (pY) peptides by Superbinder resin and further enriched the phosphorylated serine/threonine (pS/pT) peptides using TiO2 columns. We mapped the kinases activity of different subtypes of breast cancer and identified PRKCD_pY313 was upregulated in TNBC cell lines. Gain-of-function assay revealed that PRKCD_pY313 facilitated the proliferation, enhanced invasion, accelerated metastasis, increased the mitochondrial membrane potential and reduced ROS level of TNBC cell lines, while Y313F mutation and low PRKCD_pY313 reversed these effects. Furthermore, PRKCD_pY313 significantly upregulated Src_pY419 and p38_pT180/pY182, while low PRKCD_pY313 and PRKCD_Y313F had opposite effects. Dasatinib significantly inhibited the growth of PRKCD_pY313 overexpression cells, and this effect could be enhanced by Adezmapimod. In nude mice xenograft model, PRKCD_pY313 significantly promoted tumor progression, accompanied by increased levels of Ki-67, Bcl-xl and Vimentin, and decreased levels of Bad, cleaved caspase 3 and ZO1, which was opposite to the trend of Y313F group. Collectively, the heterogeneity of phosphorylation exists in different molecular subtypes of breast cancer. PRKCD_pY313 activates Src and accelerates TNBC progression, which could be inhibited by Dasatinib.


Triple Negative Breast Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Dasatinib/pharmacology , Mice, Nude , p38 Mitogen-Activated Protein Kinases/metabolism , Peptides/pharmacology , Protein Kinase C-delta/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , src-Family Kinases
3.
Cancer Lett ; 582: 216527, 2024 02 01.
Article En | MEDLINE | ID: mdl-38048842

Basal-like breast cancer (BLBC) is the most aggressive subtype with poor prognosis; however, the mechanisms underlying aggressiveness in BLBC remain poorly understood. In this study, we showed that in contrast to other subtypes, inositol monophosphatase 2 (IMPA2) was dramatically increased in BLBC. Mechanistically, IMPA2 expression was upregulated due to copy number amplification, hypomethylation of IMPA2 promoter and MYC-mediated transcriptional activation. IMPA2 promoted MI-PI cycle and IP3 production, and IP3 then elevated intracellular Ca2+ concentration, leading to efficient activation of NFAT1. In turn, NFAT1 up-regulated MYC expression, thereby fulfilling a positive feedback loop that enhanced aggressiveness of BLBC cells. Knockdown of IMPA2 expression caused the inhibition of tumorigenicity and metastasis of BLBC cells in vitro and in vivo. Clinically, high IMPA2 expression was strongly correlated with large tumor size, high grade, metastasis and poor survival, indicating poor prognosis in breast cancer patients. These findings suggest that IMPA2-mediated MI-PI cycle allows crosstalk between metabolic and oncogenic pathways to promote BLBC progression.


Breast Neoplasms , Humans , Female , Feedback , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Promoter Regions, Genetic
4.
Cell Signal ; 109: 110775, 2023 09.
Article En | MEDLINE | ID: mdl-37331415

STMN1 belongs to the stathmin gene family, it encodes a cytoplasmic phosphorylated protein, stathmin1, which is commonly observed in vertebrate cells. STMN1 is a structural microtubule-associated protein (MAP) that binds to microtubule protein dimers rather than microtubules, with each STMN1 binding two microtubule protein dimers and preventing their aggregation, leading to microtubule instability. STMN1 expression is elevated in a number of malignancies, and inhibition of its expression can interfere with tumor cell division. Its expression can change the division of tumor cells, thereby arresting cell growth in the G2/M phase. Moreover, STMN1 expression affects tumor cell sensitivity to anti-microtubule drug analogs, including vincristine and paclitaxel. The research on MAPs is limited, and new insights on the mechanism of STMN1 in different cancers are emerging. The effective application of STMN1 in cancer prognosis and treatment requires further understanding of this protein. Here, we summarize the general characteristics of STMN1 and outline how STMN1 plays a role in cancer development, targeting multiple signaling networks and acting as a downstream target for multiple microRNAs, circRNAs, and lincRNAs. We also summarize recent findings on the function role of STMN1 in tumor resistance and as a therapeutic target for cancer.


MicroRNAs , Neoplasms , Humans , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Paclitaxel/pharmacology , Cell Division , Stathmin/genetics , Neoplasms/drug therapy
5.
J Med Virol ; 95(5): e28768, 2023 05.
Article En | MEDLINE | ID: mdl-37212336

BACKGROUND: New strategies are needed to improve the treatment of patients with breast cancer (BC). Oncolytic virotherapy is a promising new tool for cancer treatment but still has a limited overall durable antitumor response. A novel replicable recombinant oncolytic herpes simplex virus type 1 called VG161 has been developed and has demonstrated antitumor effects in several cancers. Here, we explored the efficacy and the antitumor immune response of VG161 cotreatment with paclitaxel (PTX) which as a novel oncolytic viral immunotherapy for BC. METHODS: The antitumor effect of VG161 and PTX was confirmed in a BC xenograft mouse model. The immunostimulatory pathways were tested by RNA-seq and the remodeling of tumor microenvironment was detected by Flow cytometry analysis or Immunohistochemistry. Pulmonary lesions were analyzed by the EMT6-Luc BC model. RESULTS: In this report, we demonstrate that VG161 can significantly represses BC growth and elicit a robust antitumor immune response in a mouse model. The effect is amplified when combined with PTX treatment. The antitumor effect is associated with the infiltration of lymphoid cells, including CD4+ T cells, CD8+ T cells, and NK cells (expressing TNF and IFN-γ), and myeloid cells, including macrophages, myeloid-derived suppressor cells, and dendritic cell cells. Additionally, VG161 cotreatment with PTX showed a significant reduction in BC lung metastasis, which may result from the enhanced CD4+ and CD8+ T cell-mediated responses. CONCLUSIONS: The combination of PTX and VG161 is effective for repressing BC growth by inducing proinflammatory changes in the tumor microenvironment and reducing BC pulmonary metastasis. These data will provide a new strategy and valuable insight for oncolytic virus therapy applications in primary solid or metastatic BC tumors.


Herpesvirus 1, Human , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Animals , Mice , Paclitaxel/therapeutic use , Paclitaxel/pharmacology , CD8-Positive T-Lymphocytes , Oncolytic Viruses/genetics , Neoplasms/pathology , Cell Line, Tumor , Tumor Microenvironment
6.
J Exp Clin Cancer Res ; 41(1): 169, 2022 May 07.
Article En | MEDLINE | ID: mdl-35526049

BACKGROUND: Basal-like breast cancer (BLBC) is the most aggressive subtype of breast cancer because of its aggressive biological characteristics and no effective targeted agents. However, the mechanism underlying its aggressive behavior remain poorly understood. ß1,3-N-acetylglucosaminyltransferase V (B3GNT5) overexpression occurs specifically in BLBC. Here, we studied the possible molecular mechanisms of B3GBT5 promoting the aggressiveness of BLBC. METHODS: The potential effects of B3GNT5 on breast cancer cells were tested by colony formation, mammosphere formation, cell proliferation assay, flow cytometry and Western blotting. The glycosylation patterns of B3GNT5 and associated functions were determined by Western blotting, quantitative real-time PCR and flow cytometry. The effect of B3GNT5 expression on BLBC was assessed by in vitro and in vivo tumorigenesis model. RESULTS: In this study, we showed that B3GNT5 copy number amplification and hypomethylation of B3GNT5 promoter contributed to the overexpression of B3GNT5 in BLBC. Knockout of B3GNT5 strongly reduced surface expression of SSEA-1 and impeded cancer stem cell (CSC)-like properties of BLBC cells. Our results also showed that B3GNT5 protein was heavily N-glycosylated, which is critical for its protein stabilization. Clinically, elevated expression of B3GNT5 was correlated with high grade, large tumor size and poor survival, indicating poor prognosis of breast cancer patients. CONCLUSIONS: Our work uncovers the critical association of B3GNT5 overexpression and glycosylation with enhanced CSCs properties in BLBC. These findings suggest that B3GNT5 has the potential to become a prognostic marker and therapeutic target for BLBC.


Antineoplastic Agents , Breast Neoplasms , Antineoplastic Agents/therapeutic use , Breast Neoplasms/pathology , Female , Glycosylation , Humans , Neoplastic Stem Cells/pathology
7.
Front Oncol ; 11: 780094, 2021.
Article En | MEDLINE | ID: mdl-34746019

BACKGROUND: Basal-like breast cancer (BLBC) is associated with a poor clinical outcome; however, the mechanism of BLBC aggressiveness is still unclear. It has been shown that a linker histone functions as either a positive or negative regulator of gene expression in tumors. Here, we aimed to investigate the possible involvement and mechanism of HIST1H1B in BLBC progression. EXPERIMENTAL DESIGN: We analyzed multiple gene expression datasets to determine the relevance of HIST1H1B expression with BLBC. We employed quantitative real-time PCR, transwell assay, colony formation assay, and mammosphere assay to dissect the molecular events associated with the expression of HIST1H1B in human breast cancer. We studied the association of HIST1H1B with CSF2 by ChIP assay. Using tumorigenesis assays, we determine the effect of HIST1H1B expression on tumorigenicity of BLBC cells. RESULTS: Here, we show that the linker histone HIST1H1B is dramatically elevated in BLBC due to HIST1H1B copy number amplification and promoter hypomethylation. HIST1H1B upregulates colony-stimulating factor 2 (CSF2) expression by binding the CSF2 promoter. HIST1H1B expression promotes, whereas knockdown of HIST1H1B expression suppresses tumorigenicity. In breast cancer patients, HIST1H1B expression is positively correlated with large tumor size, high grade, metastasis and poor survival. CONCLUSION: HIST1H1B contributes to basal-like breast cancer progression by modulating CSF2 expression, indicating a potential prognostic marker and therapeutic target for this disease.

8.
Front Oncol ; 10: 613470, 2020.
Article En | MEDLINE | ID: mdl-33364200

BACKGROUND: E-cadherin, a hallmark of epithelial-mesenchymal transition (EMT), is often repressed due to Snail-mediated epigenetic modification; however, the exact mechanism remains unclear. There is an urgent need to understand the determinants of tumor aggressiveness and identify potential therapeutic targets in breast cancer. EXPERIMENTAL DESIGN: We studied the association of RNF20 with Snail and G9a by co-immunoprecipitation. We employed quantitative real-time PCR, ChIP, transwell assay, colony formation assay, and mammosphere assay to dissect the molecular events associated with the repression of E-cadherin in human breast cancer. We used a proteogenomic dataset that contains 105 breast tumor samples to determine the clinical relevance of RNF20 by Kaplan-Meier analyses. RESULTS: In this study, we identified that Snail interacted with RNF20, an E3 ubiquitin-protein ligase responsible for monoubiquitination of H2BK120, and G9a, a methyltransferase for H3K9me2. RNF20 expression led to the inhibition of E-cadherin expression in the human breast cancer cells. Mechanically, we showed that RNF20 and H3K9m2 were enriched on the promoter of E-cadherin and knockdown of Snail reduced the enrichment of RNF20, showing a Snail-dependent manner. RNF20 expression enhanced breast cancer cell migration, invasion, tumorsphere and colony formation. Clinically, patients with high RNF20 expression had shorter overall survival. CONCLUSION: RNF20 expression contributes to EMT induction and breast cancer progression through Snail-mediated epigenetic suppression of E-cadherin expression, suggesting the importance of RNF20 in breast cancer.

9.
Cell Death Dis ; 11(7): 520, 2020 07 09.
Article En | MEDLINE | ID: mdl-32647142

Breast cancer is considered to be the most prevalent cancer in women worldwide, and metastasis is the primary cause of death. Protease-activated receptor 1 (PAR1) is a GPCR family member involved in the invasive and metastatic processes of cancer cells. However, the functions and underlying mechanisms of PAR1 in breast cancer remain unclear. In this study, we found that PAR1 is highly expressed in high invasive breast cancer cells, and predicts poor prognosis in ER-negative and high-grade breast cancer patients. Mechanistically, Twist transcriptionally induces PAR1 expression, leading to inhibition of Hippo pathway and activation of YAP/TAZ; Inhibition of PAR1 suppresses YAP/TAZ-induced epithelial-mesenchymal transition (EMT), invasion, migration, cancer stem cell (CSC)-like properties, tumor growth and metastasis of breast cancer cells in vitro and in vivo. These findings suggest that PAR1 acts as a direct transcriptionally target of Twist, can promote EMT, tumorigenicity and metastasis by controlling the Hippo pathway; this may lead to a potential therapeutic target for treating invasive breast cancer.


Breast Neoplasms/metabolism , Nuclear Proteins/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Twist-Related Protein 1/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Disease Progression , Epithelial-Mesenchymal Transition , Female , HeLa Cells , Heterografts , Hippo Signaling Pathway , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice , Mice, SCID , Neoplasm Metastasis , Poly (ADP-Ribose) Polymerase-1/biosynthesis , Signal Transduction
10.
Cancer Biol Med ; 17(1): 44-59, 2020 02 15.
Article En | MEDLINE | ID: mdl-32296576

Since triple-negative breast cancer (TNBC) was first defined over a decade ago, increasing studies have focused on its genetic and molecular characteristics. Patients diagnosed with TNBC, compared to those diagnosed with other breast cancer subtypes, have relatively poor outcomes due to high tumor aggressiveness and lack of targeted treatment. Metabolic reprogramming, an emerging hallmark of cancer, is hijacked by TNBC to fulfill bioenergetic and biosynthetic demands; maintain the redox balance; and further promote oncogenic signaling, cell proliferation, and metastasis. Understanding the mechanisms of metabolic remodeling may guide the design of metabolic strategies for the effective intervention of TNBC. Here, we review the metabolic reprogramming of glycolysis, oxidative phosphorylation, amino acid metabolism, lipid metabolism, and other branched pathways in TNBC and explore opportunities for new biomarkers, imaging modalities, and metabolically targeted therapies.


Antineoplastic Agents/pharmacology , Lipid Metabolism/drug effects , Oxidative Phosphorylation/drug effects , Triple Negative Breast Neoplasms/pathology , Warburg Effect, Oncologic/drug effects , Amino Acids/metabolism , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Female , Humans , Molecular Targeted Therapy/methods , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/drug therapy
11.
Theranostics ; 10(10): 4644-4658, 2020.
Article En | MEDLINE | ID: mdl-32292520

Rationale: Basal-like breast cancer (BLBC) is associated with high grade, distant metastasis, and poor prognosis; however, the mechanism underlying aggressiveness of BLBC is still unclear. Emerging evidence has suggested that phospholipid scramblase 1 (PLSCR1) is involved in tumor progression. Here, we aimed to study the possible involvement and molecular mechanisms of PLSCR1 contributing to the aggressive behavior of BLBC. Methods: The potential functions of PLSCR1 in breast cancer cells were assessed by Western blotting, colony formation, migration and invasion, Cell Counting Kit-8 assay, mammosphere formation and flow cytometry. The relationship between nuclear translocation of PLSCR1 and transactivation of STAT1 was examined by immunostaining, co-IP, ChIP, and quantitative reverse transcription PCR. The effect of PLSCR1 expression on BLBC cells was determined by in vitro and in vivo tumorigenesis and a lung metastasis mouse model. Results: Compared to other subtypes, PLSCR1 was considerably increased in BLBC. Phosphorylation of PLSCR1 at Tyr 69/74 contributed to the nuclear translocation of this protein. PLSCR1 was enriched in the promoter region of STAT1 and enhanced STAT3 binding to the STAT1 promoter, resulting in transactivation of STAT1; STAT1 then enhanced cancer stem cell (CSC)-like properties that promoted BLBC progression. The knockdown of PLSCR1 led to significant inhibitory effects on proliferation, migration, invasion, tumor growth and lung metastasis of BLBC cells. Clinically, high PLSCR1 expression was strongly correlated with large tumor size, high grade, metastasis, chemotherapy resistance, and poor survival, indicating poor prognosis in breast cancer patients. Conclusions: Our data show that overexpression and nuclear translocation of PLSCR1 provide tumorigenic and metastatic advantages by activating STAT1 signaling in BLBC. This study not only reveals a critical mechanism of how PLSCR1 contributes to BLBC progression, but also suggests potential prognostic indicators and therapeutic targets for this challenging disease.


Breast Neoplasms/genetics , Phospholipid Transfer Proteins/genetics , Protein Transport/genetics , STAT1 Transcription Factor/genetics , Animals , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Movement , Cell Proliferation , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, SCID , Neoplastic Stem Cells/metabolism , Phospholipid Transfer Proteins/metabolism , Phosphorylation/physiology , Prognosis , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction , Transcriptional Activation
12.
Genes Dis ; 7(2): 172-184, 2020 Jun.
Article En | MEDLINE | ID: mdl-32215287

Epithelial-mesenchymal Transition (EMT) is a de-differentiation program that imparts tumor cells with the phenotypic and cellular plasticity required for drug resistance, metastasis, and recurrence. This dynamic and reversible events is governed by a network of EMT-transcription factors (EMT-TFs) through epigenetic regulation. Many chromatin modifying-enzymes utilize metabolic intermediates as cofactors or substrates; this suggests that EMT is subjected to the metabolic regulation. Conversely, EMT rewires metabolic program to accommodate cellular changes during EMT. Here we summarize the latest findings regarding the epigenetic regulation of EMT, and discuss the mutual interactions among metabolism, epigenetic regulation, and EMT. Finally, we provide perspectives of how this interplay contributes to cellular plasticity, which may result in the clinical manifestation of tumor heterogeneity.

13.
Theranostics ; 9(1): 34-47, 2019.
Article En | MEDLINE | ID: mdl-30662552

Basal-like breast cancer (BLBC) is the most aggressive subtype with a poor clinical outcome; however, the molecular mechanisms underlying aggressiveness in BLBC remain poorly understood. Methods: The effects of gamma-aminobutyrate aminotransferase (ABAT) on GABA receptors, Ca2+-NFAT1 axis, and cancer cell behavior were assessed by Ca2+ imaging, Western blotting, immunostaining, colony formation, and migration and invasion assays. We elucidated the relationship between ABAT and Snail by luciferase reporter and ChIP assays. The effect of ABAT expression on BLBC cells was determined by in vitro and in vivo tumorigenesis and a lung metastasis mouse model. Results: We showed that, compared to other subtypes, ABAT was considerably decreased in BLBC. Mechanistically, ABAT expression was downregulated due to Snail-mediated repression leading to increased GABA production. GABA then elevated intracellular Ca2+ concentration by activating GABA-A receptor (GABAA), which contributed to the efficient activation of NFAT1 in BLBC cells. ABAT expression resulted in inhibition of tumorigenicity, both in vitro and in vivo, and metastasis of BLBC cells. Thus, loss of ABAT contributed to BLBC aggressiveness by activating the Ca2+-NFAT1 axis. In breast cancer patients, loss of ABAT expression was strongly correlated with large tumor size, high grade and metastatic tendency, poor survival, and chemotherapy resistance. Conclusions: Our findings have provided underlying molecular details for the aggressive behavior of BLBC. The Snail-mediated downregulation of ABAT expression in BLBC provides tumorigenic and metastatic advantages by activating GABA-mediated Ca2+-NFAT1 axis. Thus, our results have identified potential prognostic indicators and therapeutic targets for this challenging disease.


4-Aminobutyrate Transaminase/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/physiopathology , Calcium/metabolism , NFATC Transcription Factors/metabolism , Animals , Cations, Divalent/metabolism , Cell Line, Tumor , GABAergic Neurons , Humans , Mice , Models, Theoretical
14.
Trends Cancer ; 5(1): 30-45, 2019 01.
Article En | MEDLINE | ID: mdl-30616754

Cancer cells display a high rate of glycolysis in the presence of oxygen to promote proliferation. Gluconeogenesis, the reverse pathway of glycolysis, can antagonize aerobic glycolysis in cancer via three key enzymes - phosphoenolpyruvate carboxykinase (PEPCK), fructose-1,6-bisphosphatase (FBPase), and glucose-6-phosphatase (G6Pase). Recent studies have revealed that, in addition to metabolic regulation, these enzymes also play a role in signaling, proliferation, and the cancer stem cell (CSC) tumor phenotype. Multifaceted regulation of PEPCK, FBPase, and G6Pase through transcription, epigenetics, post-translational modification, and enzymatic activity is observed in different cancers. We review here the function and regulation of key gluconeogenic enzymes and new therapeutic opportunities.


Gluconeogenesis , Glucose/biosynthesis , Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic , Gluconeogenesis/drug effects , Gluconeogenesis/genetics , Glucose-6-Phosphatase/genetics , Glucose-6-Phosphatase/metabolism , Glycolysis , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/etiology , Phosphoenolpyruvate Carboxykinase (ATP)/genetics , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Reactive Oxygen Species/metabolism
15.
Sci Rep ; 8(1): 16743, 2018 11 13.
Article En | MEDLINE | ID: mdl-30425310

Basal-like breast cancer (BLBC) is associated with a poor clinical outcome due to the few treatment options and absence of effective targeted agents. Here, we show that malic enzyme 1 (ME1) is dramatically upregulated in BLBC due to ME1 copy number amplification. ME1 expression increases glucose uptake and lactate production, and reduces oxygen consumption, leading to aerobic glycolysis. ME1 expression promotes, whereas knockdown of ME1 expression suppresses tumorigenicity. In breast cancer patients, ME1 expression is positively correlated with large tumor size, high grade, poor survival, and chemotherapy resistance. Our study not only contributes to a new understanding of how metabolic reprogramming contributes to BLBC progression, but also provides a potential prognostic marker and therapeutic target for this challenging disease.


Breast Neoplasms/diagnosis , Disease Progression , Malate Dehydrogenase/metabolism , Aerobiosis , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation , Gene Dosage/genetics , Glycolysis , Humans , Prognosis , Tumor Hypoxia , Up-Regulation
16.
J Exp Med ; 215(6): 1679-1692, 2018 06 04.
Article En | MEDLINE | ID: mdl-29728441

Basal-like breast cancer (BLBC) is associated with a poor clinical outcome as a result of the few treatment options and poor therapeutic response. Here, we report that elevated expression of urine diphosphate-galactose ceramide galactosyltransferase (UGT8) specifically occurs in BLBC and predicts poor prognosis in breast cancer patients. UGT8 expression is transcriptionally up-regulated by Sox10, triggering the sulfatide biosynthetic pathway; increased sulfatide activates integrin αVß5-mediated signaling that contributes to BLBC progression. UGT8 expression promotes, whereas UGT8 knockdown suppresses tumorigenicity and metastasis. Importantly, we identify that zoledronic acid (ZA), a marketed drug for treating osteoporosis and bone metastasis, is a direct inhibitor of UGT8, which blocks the sulfatide biosynthetic pathway. Significantly, a clinically achievable dosage of ZA exhibits apparent inhibitory effect on migration, invasion, and lung metastasis of BLBC cells. Together, our study suggests that UGT8 is a potential prognostic indicator and druggable target of BLBC and that pharmacologic inhibition of UGT8 by ZA offers a promising opportunity for treating this challenging disease.


Breast Neoplasms/pathology , Disease Progression , Ganglioside Galactosyltransferase/antagonists & inhibitors , Receptors, Vitronectin/metabolism , Signal Transduction , Sulfoglycosphingolipids/metabolism , Animals , Biosynthetic Pathways/drug effects , Breast Neoplasms/genetics , Carcinogenesis/drug effects , Carcinogenesis/pathology , Cell Line, Tumor , Cell Movement/drug effects , Female , Ganglioside Galactosyltransferase/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice, SCID , Neoplasm Invasiveness , Neoplasm Metastasis , SOXE Transcription Factors/metabolism , Signal Transduction/drug effects , Survival Analysis , Up-Regulation/drug effects , Zoledronic Acid/pharmacology
17.
Clin Cancer Res ; 24(5): 1227-1239, 2018 03 01.
Article En | MEDLINE | ID: mdl-29229632

Purpose: The aryl hydrocarbon receptor (AhR) has been generally recognized as a ligand-activated transcriptional factor that responds to xenobiotic chemicals. Recent studies have suggested that the expression of AhR varies widely across different cancer types and cancer cell lines, but its significance in cancer treatment has yet to be clarified.Experimental Design: AhR expression in non-small cell lung cancer (NSCLC) was determined by Western blotting and IHC staining. In vitro and in vivo functional experiments were performed to determine the effect of AhR on sensitivity to targeted therapeutics. A panel of biochemical assays was used to elucidate the underlying mechanisms.Results: A high AhR protein level indicated an unfavorable prognosis for lung adenocarcinoma. Inhibition of AhR signaling sensitized EGFR tyrosine kinase inhibitors (TKIs) in NSCLC cells that express high level of endogenous AhR protein. Notably, activation of AhR by pharmacologic and molecular approaches rendered EGFR-mutant cells resistant to TKIs by restoring PI3K/Akt and MEK/Erk signaling through activation of Src. In addition, we found that AhR acts as a protein adaptor to mediate Jak2-Src interaction, which does not require the canonical transcriptional activity of AhR.Conclusions: Our results reveal a transcription-independent function of AhR and indicate that AhR may act as a protein adaptor that recruits kinases bypassing EGFR and drives resistance to TKIs. Accordingly, targeting Src would be a strategy to overcome resistance to EGFR TKIs in AhR-activated NSCLC. Clin Cancer Res; 24(5); 1227-39. ©2017 AACR.


Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , src-Family Kinases/metabolism , Adult , Aged , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Cell Line, Tumor , Cell Proliferation , Cell Survival , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Follow-Up Studies , Humans , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Male , Mice, Nude , Middle Aged , Mutation , Prognosis , Protein Kinase Inhibitors/therapeutic use , RNA, Small Interfering/metabolism , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction , Xenograft Model Antitumor Assays , src-Family Kinases/genetics
18.
J Exp Med ; 214(4): 1065-1079, 2017 04 03.
Article En | MEDLINE | ID: mdl-28270406

Basal-like breast cancer (BLBC) is associated with high-grade, distant metastasis and poor prognosis. Elucidating the determinants of aggressiveness in BLBC may facilitate the development of novel interventions for this challenging disease. In this study, we show that aldo-keto reductase 1 member B1 (AKR1B1) overexpression highly correlates with BLBC and predicts poor prognosis in breast cancer patients. Mechanistically, Twist2 transcriptionally induces AKR1B1 expression, leading to nuclear factor κB (NF-κB) activation. In turn, NF-κB up-regulates Twist2 expression, thereby fulfilling a positive feedback loop that activates the epithelial-mesenchymal transition program and enhances cancer stem cell (CSC)-like properties in BLBC. AKR1B1 expression promotes, whereas AKR1B1 knockdown inhibits, tumorigenicity and metastasis. Importantly, epalrestat, an AKR1B1 inhibitor that has been approved for the treatment of diabetic complications, significantly suppresses CSC properties, tumorigenicity, and metastasis of BLBC cells. Together, our study identifies AKR1B1 as a key modulator of tumor aggressiveness and suggests that pharmacologic inhibition of AKR1B1 has the potential to become a valuable therapeutic strategy for BLBC.


Aldehyde Reductase/physiology , Breast Neoplasms/pathology , Epithelial-Mesenchymal Transition , Aldehyde Reductase/antagonists & inhibitors , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/etiology , Cell Line, Tumor , Cell Movement , Dinoprost/analysis , Disease Progression , Feedback, Physiological , Female , Humans , Mice , NF-kappa B/physiology , Neoplasm Invasiveness , Neoplastic Stem Cells/pathology , Transcription Factor RelA/physiology , Twist-Related Protein 2/physiology
19.
Nat Commun ; 8: 14228, 2017 02 15.
Article En | MEDLINE | ID: mdl-28198361

Snail1, a key transcription factor of epithelial-mesenchymal transition (EMT), is subjected to ubiquitination and degradation, but the mechanism by which Snail1 is stabilized in tumours remains unclear. We identify Dub3 as a bona fide Snail1 deubiquitinase, which interacts with and stabilizes Snail1. Dub3 is overexpressed in breast cancer; knockdown of Dub3 resulted in Snail1 destabilization, suppressed EMT and decreased tumour cell migration, invasion, and metastasis. These effects are rescued by ectopic Snail1 expression. IL-6 also stabilizes Snail1 by inducing Dub3 expression, the specific inhibitor WP1130 binds to Dub3 and inhibits the Dub3-mediating Snail1 stabilization in vitro and in vivo. Our study reveals a critical Dub3-Snail1 signalling axis in EMT and metastasis, and provides an effective therapeutic approach against breast cancer.


Breast Neoplasms/pathology , Endopeptidases/metabolism , Proteolysis , Snail Family Transcription Factors/metabolism , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Movement , Down-Regulation/genetics , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , HEK293 Cells , Humans , Interleukin-6/metabolism , Mice, SCID , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Protein Binding , Protein Stability , Protein Transport , Ubiquitination
20.
Carcinogenesis ; 36 Suppl 1: S128-59, 2015 Jun.
Article En | MEDLINE | ID: mdl-26106135

The purpose of this review is to stimulate new ideas regarding low-dose environmental mixtures and carcinogens and their potential to promote invasion and metastasis. Whereas a number of chapters in this review are devoted to the role of low-dose environmental mixtures and carcinogens in the promotion of invasion and metastasis in specific tumors such as breast and prostate, the overarching theme is the role of low-dose carcinogens in the progression of cancer stem cells. It is becoming clearer that cancer stem cells in a tumor are the ones that assume invasive properties and colonize distant organs. Therefore, low-dose contaminants that trigger epithelial-mesenchymal transition, for example, in these cells are of particular interest in this review. This we hope will lead to the collaboration between scientists who have dedicated their professional life to the study of carcinogens and those whose interests are exclusively in the arena of tissue invasion and metastasis.


Carcinogens, Environmental/adverse effects , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/pathology , Animals , Disease Progression , Environmental Exposure/adverse effects , Epithelial-Mesenchymal Transition/drug effects , Humans
...